Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SATCOM is crucial for tactical networks, particularly submarines with sporadic communi- cation requirements. Emerging SATCOM technologies, such as low-earth-orbit (LEO) satellite networks, provide lower latency, greater data reliability, and higher throughput than long-distance geostationary (GEO) satellites. Software-defined networking (SDN) has been introduced to SATCOM networks due to its ability to enhance management while strengthening network control and security. In our previous work, we proposed a SD-LEO constellation for naval submarine communication networks, as well as an extreme gradient boosting (XGBoost) machine-learning (ML) approach for classifying denial-of-service attacks against the constellation. Nevertheless, zero-day attacks have the potential to cause major damage to the SATCOM network, particularly the controller architecture, due to the scarcity of data for training and testing ML models due to their novelty. This study tackles this challenge by employing a predictive queuing analysis of the SD-SATCOM controller design to rapidly generate ML training data for zero- day attack detection. In addition, we redesign our singular controller architecture to a decentralized controller architecture to eliminate singular points of failure. To our knowledge, no prior research has investigated using queuing analysis to predict SD-SATCOM controller architecture network performance for ML training to prevent zero-day attacks. Our queuing analysis accelerates the training of ML models and enhances data adaptability, enabling network operators to defend against zero-day attacks without precollected data. We utilized the CatBoost algorithm to train a multi-output regression model to predict network performance statistics. Our method successfully identified and classified normal, non-attack samples and zero-day cyberattacks with over 94% accuracy, precision, recall, and f1-scores.more » « less
-
First responders and other tactical teams rely on mo- bile tactical networks to coordinate and accomplish emergent time- critical tasks. The information exchanged through these networks is vulnerable to various strategic cyber network attacks. Detecting and mitigating them is a challenging problem due to the volatile and mobile nature of an ad hoc environment. This paper proposes MalCAD, a graph machine learning-based framework for detecting cyber attacks in mobile tactical software-defined networks. Mal- CAD operates based on observing connectivity features among various nodes obtained using graph theory, instead of collecting information at each node. The MalCAD framework is based on the XGBOOST classification algorithm and is evaluated for lost versus wasted connectivity and random versus targeted cyber attacks. Results show that, while the initial cyber attacks create a loss of 30%–60% throughput, MalCAD results in a gain of average throughput by 25%–50%, demonstrating successful attack mitigation.more » « less
-
Satellite communication (SATCOM) is a critical infrastructure for tactical networks--especially for the intermittent communication of submarines. To ensure data reliability, recent SATCOM research has begun to embrace several advances, such as low earth orbit (LEO) satellite networks to reduce latency and increase throughput compared to long-distance geostationary (GEO) satellites, and software-defined networking (SDN) to increase network control and security. This paper proposes an SD-LEO constellation for submarines in communication networks. An SD-LEO architecture is proposed, to Denial-of-Service (DoS) attack detection and classification using the extreme gradient boosting (XGBoost) algorithm. Numerical results demonstrate greater than ninety-eight percent in accuracy, precision, recall, and F1-scores.more » « less
-
Communication networks in power systems are a major part of the smart grid paradigm. It enables and facilitates the automation of power grid operation as well as self-healing in contingencies. Such dependencies on communication networks, though, create a roam for cyber-threats. An adversary can launch an attack on the communication network, which in turn reflects on power grid operation. Attacks could be in the form of false data injection into system measurements, flooding the communication channels with unnecessary data, or intercepting messages. Using machine learning-based processing on data gathered from communication networks and the power grid is a promising solution for detecting cyber threats. In this paper, a co-simulation of cyber-security for cross-layer strategy is presented. The advantage of such a framework is the augmentation of valuable data that enhances the detection as well as identification of anomalies in the operation of the power grid. The framework is implemented on the IEEE 118-bus system. The system is constructed in Mininet to simulate a communication network and obtain data for analysis. A distributed three controller software-defined networking (SDN) framework is proposed that utilizes the Open Network Operating System (ONOS) cluster. According to the findings of our suggested architecture, it outperforms a single SDN controller framework by a factor of more than ten times the throughput. This provides for a higher flow of data throughout the network while decreasing congestion caused by a single controller’s processing restrictions. Furthermore, our CECD-AS approach outperforms state-of-the-art physics and machine learning-based techniques in terms of attack classification. The performance of the framework is investigated under various types of communication attacks.more » « less
An official website of the United States government

Full Text Available